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Chapter 1

MATRICES AND LINEAR EQUATIONS

A familiarity with matrices is necessary nowadays in many areas of
mathematics and in a wide wvariety of other disciplines. Areas of mathematics
where matrices occur include algebra, differential equations, calculus of
several variables, probability and statistics, optimization, and graph
theory. Other disciplines using matrix theory include engineering, physical
sciences, biological sciences, economics and management science.

In this first chapter we give the fundamentals of matrix algebra,
determinants, and systems of linear equations. At the end of the chapter we
give some examples of situations in mathematics and other disciplines where

matrices arise.

1.1 Matrices and matrix algebra

A marrix is a rectangular array of symbols. In this book the symbols
will usually be either real or complex numbers. The separate elements of the
array are known as the entries of the matrix.

Let m and n be positive integers. An nmun matrix A consists of m rows

and n columns of numbers written in the following manner.

a, a. ... a“]

“z: ﬂ.zz s ow ﬂiﬂ




We often write A = {aa,:’ for short. The entry a;j lies in the 1-th row and
the j-th column of the matrix A.

Two man matrices A = {a,lj} and B = [hij} are equal if and only if all
the corresponding entries of A and B are equal.
ie. “;j = hij for each i and j.

The sum of the mun matrices A = {aﬁ} and B = {hﬁ} is the man matrix
denoted A + B which bhas entry a + bii in the (i,j)-place for each i,j.

Let A be a scalar (i.e. a real or complex number) and let A = (aij] be
an man matrix. The scalar multiple of A by A is the mun matrix denoted LA
which has entry lﬂuin the (i,j)-place for each i,j.

1.1.2 Proposition

The following properties hold.

(i) A+ B =B + A for all man matrices A and B, i.e. addition of matrices
is commutative,

(i) (A+B)+C=A+ (B + Q) for all m«n matrices A,B, and C, i.e.addition
of matrices is associative.

(iii) A(A + B) = AA + AB for all scalars A and all mxn matrices A and B.

(iv) {ll + ?..2}.& = llﬁ + Il.!A for all scalars 11.11 and all mxn matrices A.

(v) tlllijﬁu = ll{lzﬁu.} for all scalars Ji..],il..2 and all mxn matrices A.

Proof

These properties follow at once from the properties of the real and
complex number systems.
1.1.3 Remark

If we write -A for the matrix whose entries are 2, for each i, then
-A = (-1)A, ie. the muliiple of the matrix A by the scalar -1, Also if we

denote by O the nxn matrix with zero as each entry then A + (-A) = 0.



1.1.4 Matrix multiplication

A 1xn matrix will be called a row vector of length n and an mxl matrix
will be called a column vector of length m.

Leth={aia a ,.*a.}hcahnmalrixandﬂ= hl be an nal martrix.

2 3
b2

b

We define the product AB to be the 1xl matrix with the single entry

all't:-1 + :11I:t1 +.....+ab.

Now we will define matrix multiplication in general. We say that the
product AB of the two matrices A and B is defined if and only if the number
of columns of A equals the number of rows of B.

(i.e. AB is defined if and only if A is an mun mamnx and B is an n:p matrix
for some integers m,n,p.)

We define the matrix product AB to be the mup matrix which has as

its (i,j)-entry

a“blj + auhz,- + “uba,- + ... +ab

R

(In shorthand notation the (i,j)-entry is [ ambkj.]
k=1

In other words the (ij)-entry of AB is the product of the i-th row of A

with the j-th column of B, this product being as in the special case of ln
and nal matrices defined above.

1.1.5 Example
1-16 -1 612
et A=]|4 12, B=|0-221
320 1 111


Highlight
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1.1.6 Propaosition
The following properties hold.

(i) (AB)C = A(BC) whenever these products are meaningful.

(i.e. matrix multiplication is associative).

(ii) A(B + C) = AB + AC for all msn matrices A,B and all nsp matrices C.
(iii) (A +B)C = AC + BC for all man matrices A and B and all nap marrices C.

Proof

(i) Let AB,C be of sizes maxn, mp, pxq respectively.

The (ik)-entry of AB mZa b. and hence the (ij)-entry of (AB)C

r=l

Za b -: An examination of the product A(BC) shows that exactly the
r=1l

same expression occurs as the (i,j)-entry of A(BC).

(ii) Let A be of size man, B and C of size nap.

Then the (ij)-enry of A(B + C) is tzlalt'[h + -:H] and this is easily

seen 1o equal the (ij)-entry of AB + AC.

(iii) This follows in a similar manner to (ii).
1.1.7 Remark

Martrix multiplication is not in general commutative. Note first that
for AB and BA 1o both be defined it is necessary that A and B are each nsn
matrices for some integer n, i.e. square matrices of the same size. However
AB and BA will be different in general.
1.1.8 Exercise

Let A = [; %] B = [{1’ ;} Show that AB # BA.
1.1.9 Remark

A matrix of especial importance is the mxn identity matrix, denoted L,
which is defined to have entries a. =1 for all i and a, = 0 for i = j.

Often when we are dealing with nan matrices for a fixed value of n we



will simply write I for the identity matrix omitting the suffix n.
For any mxn matrix A it is easy to see that Al = A and that I A=A
1.1.10 The transpose of a matrix

Let A be an mxn matrix.
The transpose of A is the nam matrix with entry a in the (i,j)-place. The
transpose of A is denoted by A'.
Note that the rows of A become the columns of A' and vice versa.

1.1.11 Proposition

The transpose satisfies the following properties.
(i) (A + B)' = A" + B' for all m:n matrices A and B.
(i) (A) = A for all mxn matrices A.
(iii) (AB)' = B'A' whenever the product AB is defined.
Proof

Easy exercise.

Let A be an mun maitrix whose entries are complex numbers.

The conjugate transpose of A is the mam matrix with entry 51” in the
(ij)-place. The conjugate transpose is denoted A',

The conjugate transpose satisfies the same three properties as
those for the transpose given in (1.1.11).

1.1.12 The trace of a square matrix

Let A be an mxn matrix.

We define the trace of A by trace A = E a.
i=l

The trace of A is a single real or complex number,
1.1.13 Proposition
The trace has the following properties.
(i) trace (A + B) = trace A + trace B for all nxn matrices A and B.

(ii) trace (AA) = A trace A for all mn matrices A and all scalars A,



(iii) trace A' = trace A for all nan matrices A.
(iv) race AB = trace BA for all n:n matrices A and B.

Proof

Easy exercise to prove (i)(i)), and (iii). To prove (iv) note that the

1] n n

Gi)entry of AB is] ab ~which yiclds that trace AB =} Jab

j-l |I|_}I]hn

Since both i and j are being summed from 1 to n this last double sum is
symmetric in A and B and thus it must also give the value of trace BA.
Problems 1A

12 321
l.manﬁg], B= [j'[l,].cnlz-l].n=l4 6 n].
1 3

1-2-2
Calculate each of the following matrix products;

AB, CA, DC, DCAB, A%, D, A’B*

1 1 0 1 n n(n-1)
2. Let A = |0 1 2|. Prove by induction that A" = |0 1 2n |.
0 01 00 1

3. Let A be an man matrix and B an mp matrix. Let B,B,, . . ,!5‘.p denote the
columns of B. Show that AB],ABT, . ,.ABP are the columns of AB,

If ﬁul_ﬁz_. - .An denote the rows of A show that AIB,A:B., . .ﬁmB are the
rows of AB.

4, Let A be an nxn matrix with entries in F. If AB = BA for all nxn matrices
B with entries in F show that A = al for some « € F, ie. A is a scalar
multiple of the identity matrix.

5. Let A be an man matrix with complex entries. If trace A'A = 0 show that A

15 the zero matrix.
=] n

(Hint - show that trace A'A=E E |aij|: where |z| denotes the modulus of
i=1j=1

the complex number z.)
6. Let E..j denote the mun matrix with entry 1 in the (i,j)-place and zero

clsewhere, Show that any mn matrix A = {aﬂ) is expressible in the form



5 n
Shuwalsul]mE“Eld:ﬂifj#k.nndEuEﬁnEﬁ.

7. Let the nan matrix X be partitioned as follows ;

X = [‘é g] where A is a pxp matrix, B is a pxq matrix, C is a qxp matrix, and
D is a qs:q matrix where p + q = n.

Let Y = {E. E] be an nan matrix partitioned in a similar way. ( ie. E is a
pxp matrix etc.)

Show that the product XY is partitioned as follows.

XY= AE + BG EF+EH]
CE + DG CF + DH

1.2 Systems of linear equations

A system of simultancous linear equations

ax +ax +.....+ax = t:ul
+ + ... .. =
nnxl nn“z + ahx t:n1
+ + ... . + =
a X +a.x a x bm
in n unknowns XXy « . . LK CAnN be rewritten as a single matrix equation

Ax = b where A = {nﬁ] is an mxn matrix, b = {bi} is a column wvector of
length m, and x = [xij is a column vector of length n.
We assume that the entries of A and b are real.

A solution of the system is an n-tuple of real numbers {u].ur - uﬂ)
such that x = @ for each 1 = 1.2,....,n satisfies each of the m
equations.

The solution set of the system is the set of all solutions of the



8

system. It is a subset of R". There are three possibilities for the solution
set of the system;
(i) there is a unique solution, i.e. the solution set consists of a
single point,
(ii) there are infinitely many solutions,
(iii) there are no solutions at all, i.e. the solution set is empty.
(In this case we say that the equations are inconsistent.)
For m < n only possibilities (ii) and (iii) can occur whereas for
m 2 n all three possibilities can occur.
We illustrate this with a few simple examples;
1.2.1 Example
Z:Ir.I + 3:2 = 8
311 - 3::1 = 2
This system of two equations in two unknowns has the unique solution X = 2,
X, = 4/3.
Geometrically the two equations each represent a line in the plane and the

solution set of the system is the point of intersection of the two lines.

1.2.2 Example

2x + 3x, =8

4:{' + 611 = 16
This system of two equations in two unknowns has infinitely many solutions.
Specifically x; = @, x, = (8 - 2a)/3 for any & € R will be a solution.
Geometrically the two equations each represent the same line in the plane

and the solution set of the system is the infinite set of all points on this

line.



1.2.3 Example

Exl + 3:1 = §

4xl +6x, =3
This system of two equations in two unknowns has no solutions, the two
equations being inconsistent.
Geometrically the two equations represent two parallel lines and so there
are no points common to the two lines.

1.2.4 Example

x1+212+13=3

X -X -X%X =2
1 2 3

Adding these two equations yiclds 2x + x, = 5. This gives X, =35 - 2x.
Substituting into the first equation of the system then pgives
13'3‘1,'111'3‘?‘1'2(5'hl}=3xl -7.
Thus X, is free to take any real number value and X, and x, are then given
in terms of X,
The solution setis [ (&, 5 - 2a, 3 - 7); a € R }.
Geometrically the two equations of the system each represent a plane in R
and the solution set is the line of intersection of the two planes.
1.2.5 Remark

In this last example m = 2, n = 3, ie, there are more unknowns than
equations. In that situation a unigue solution to the system cannot be
expected. There is insufficient information to be able to obtain a unique
value for the unknowns so that possibility (i) cannot occur.

Geometrically two equations in three unknowns represent two planes in
R’. These two planes can either intersect in a line as in example (1.2.4) or
else be parallel and so have no peoints of intersection, i.e. the solution

set of the corresponding system is the empty set. Similar geometric
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considerations preclude the possibibility of there being a unigque solution
in the case of a system of m equations in n unknowns with m < n for larger

values of m and n.
1.2.6 Some special kinds of system

An mxn matrix is called an echelon matrix if it satisfies the following
two conditions;

(i) the first non-zero entry in each row is one,

(ii) for any two consecutive rows either the lower of the two rows
contains only zeros or else the first non-zero entry of the lower row is to
the right of the first non-zero entry of the upper row.

Below are some examples of echelon matrices;

YN HE A
001 001 3 0
When A is an echelon matrix the system of equations Ax = b is very

casily solved by a method called back substitution. We illustrate this

Bt -

Our equations are x, + 3::1 + Zx] =3

method by a few examples;
1.2.7 Example

X + x=4
27 M

x1=5

Starting with the last equation x, = 5, we substitute into the equation

above to obmin x, = -1, and then substitute into the equation above that to

obtain x = -4. This system thus has the unique solution x, = -4, X, = -1,

X =5,



"

1.2.8 Example 1212
0001
0000
0000

Our equations are x + 2x, + x, + 2x, = 4,

X, = 2,
Substituting x, = 2 into the equation above yields that
X, + 211 + x, = 0. Thus two of the variables X XX,
number value and the third one is then determined in terms of these. If we

take x = @, x, = B where & € R, B € R, then we can write x, = -a - 20. Our

can take any real

solution set may thus be written in the form [(o,B,-ax - 2B,2); o« € RP € R).

1.2.9 Example s
; 8
3 3

X, +4x +x‘-5

HHHH‘

1341
0012
0000
o000
Our equations are x + 3
x, + 2:‘ = B,
0 =3

Clearly the last equation is impossible and 50 the system has no
solution, i.e. the solution set is the empty set.
1.2.10 Remark

The solution sets in some of the above examples contain free
variables, ie. variables which may take any real number value, the other
variables being given in terms of these free variables. In example (1.2.8)
there are two free wvariables , in example (1.2.4) there is one free
variable.

The number of free wvariables in the solution set is called the
dimension of the solution set. (It is also sometimes called the nuwmber of

degrees of freedom.) If there is a unique solution, i.e. the solution set is
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a single point of R', then the dimension of the solution set is said to be

ZETO.

1.2.11 Elementary operations

The. following three kinds of operation on a set of simultancous linear
equations are called elementary operations,
(1) Interchange of a pair of equations.
(2) Multiplication of one equation by a non-zero scalar A.
(3) Addition of A times one equation to another equation, A being a scalar,
1.2.12 Definition

Two systems of m simultaneous linear equations in n unknowns are
equivalent if one system is obtainable from the other by a finite sequence

of elementary operations.

1.2.13 Proposition

Two equivalent systems of simultaneous linear equations will have
exactly the same solution set.

Proof

——

If the system Cx = d is obtained from the system Ax

b by a single
elementary operation then any solution of Ax = b will also be a solution of
Cx = d. Since each of the three kinds of elementary operation is reversible
it follows that Ax = b and Cx = d will have exactly the same solution set.
The result follows immediately.
1.2.14 Remark

Qur approach for solving a system of linear equations will be to
transform the system into an equivalent one of the form Cx = d where C is an

echelon marrix. This system is then solved by back substitution.
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1.2.15 The augmented matrix

Let Ax = b be a system of m linear equations in n unknowns.
The (m + 1):n matrix [A,b] obtained by adjoining the column b to the man
matrix A is called the augmented matrix of the system.

1.2.16 Elementary row operations

The following three kinds of operation on a matrix are called

elementary row operations,

(1) Interchange of two rows of a matrix.

(2) Multiplication of one row of the matrix by a non-zero scalar A

(3) Addition of A times one row of the matrix to another row, A being a
scalar.

Performing the elementary row operations of kind (1),(2), or (3) on the
augmented matrix [A,b] of a system of equations Ax = b corresponds exactly
to performing the elementary operations of (1.2.11) on the set of equations.
1.2.17 Comment

Each operation in (1.2.16) amounts to left multplication by a certain
matrix.

An operation of kind (1) where row r and row s are interchanged amounts
to left multiplication by the mam matrix E which has entries ¢ = 1 for all
igrivgs e =¢ =1 mdcﬂ-:ﬂuth:mis:‘

001
Form=3r=1,s=3 E= (01 0].
100

An operation of kind (2) where row r is multiplied by A amounis to lefi
multiplication by the maum matrix E which has entries e, = Afor i =,
.= 1 for all 1 # r, and eii = [ otherwise.

100
Form=3r=2 E={0X&0].
001

An operation of kind (3) where A times row s is added to row r amounts
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to left muldplication by the matrix E with entries s, = 1 for all i,

c = A, and e, = 0 otherwise.

110
Form=3r=15=2E=|010].
001

The above three kinds of matrices E are known as elementary matrices.

1.2.18 Gaussian elimination

To solve a system of simultaneous linear equations Ax = b we perform a
sequence of elementary row operations on the augmented matrix [Ab] to
obtain [C,d] where C is an echelon matrix. It is not difficult to see that
any m«n matrix A can be reduced to an echelon matrix by a sequence of
elementary row operations. The argument goes as follows.

We may assume that the first column of A does not consist entirely of
zeros since if it did the first wvariable would be redundamt, By
interchanging rows if necessary and multiplying by a suitable scalar we can
ensure that 1 appears in the (1,1)-place. Then subtracting suitable
multiples of row 1 from the other rows makes all other entries in column 1
equal to zero. Now look at the (n-1)a(n-1) matrix obtained by omitting row 1
and ‘mlunm 1. If the first column of this (n-1}(n-1) matrix does not
consist entirely of zeros we can, in the same manner as above, make the
(1,1)-entry of this matrix equal 1o one and all the entries below it equal
to zero. If the first column of the (n-1)x(n-1) matrix does consist entirely
of zeros move to the second column. If this column does not consist entirely
of zeros we can, as above, make it into a column with 1 on top and all zeros
below. If the column does consist entirely of zeros move to the third
column. Proceeding in this fashion we eventually must obtain an echelon

form.

By (1.2.13) the solution set of the system Ax = b will be identical to
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the solution set of Cx = d and since C is an echelon matrix we can easily
find its solution set by back substitution.
The method we have described is called the method of Gaussian
efimination.
We illustrate the method by a couple of examples;
1.2.19 Example
1,‘*3"1+"3‘1‘=ﬂ
‘.':',:lll;z + 3::3 + 3:&* = 8
X~ X, - 311 -dx‘ = -§
X + %X, +5x - 2x =-8

We write the augmented matrix as follows;

(1 2 1 -1 0)
02 3 3|8
1-1-3-4{-8
(1 1 5-2|-8

Subtracting row 1 from rows 3 and 4 yields
1 2 1-1}0
0 23 3|8
0-3-4-3|-8
0 -1 4 -1|-8)
Adding twice row 4 to row 2 and subtracting three times row 4 from row 3
yields
12 1-110
0011 1|-8
0 0-16 0}16
0-1 4-1|-B

Dividing row 3 by -16, subtracting 11 times the new row 3 from row 2,
multiplying row 4 by -1 ,and interchanging rows yields the required echelon

form.

B coo~

Back substitution quickly gives t

xlnl
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1.2.20 Example
2%, - X, - X, =2
X, + X - 4::‘ = ]
X, - X, - 4::‘ = 4
The augmented matrix for this system is as follows;
(2 -1 -1 0|2
1 01 -4)1
0 1-1-4]4
Subtracting twice row 2 from row 1 yields
0 -1 -3 E|O)
1 0 1-4/1
0 1-1-4/4

Adding row 3 to row 1 yields
00 -4 4|4

10-1-4|1
01 -1-4]4
Dividing row 1 by -4 and interchanging rows yields the desired echelon form
(10 1-4]1

01-1-4(4

00 1-1|-1

Back substitution quickly shows that there is one free wvariable and the

solution set is x, = @, x, =@ - 1, x, = 5a + 3, x, = 3a + 2,
where o € R.
1.2.21 Comment

Let C be an echelon matrix. If in the system Cx = d we find that one
row, say row r, of C consists entirely of zeros while the comesponding
entry d: of d is non-zero then the system will have no solution, i.e. the
equations are inconsistent.

The method of Gaussian elimination we have described is equivalent to
operating directly on the set of equations and successively eliminating

variables. For computational purposes it is better to operate on the
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augmented matrix rather than on the equations themselves. When the number of
equations and unknowns is large the procedure would be implemented on a
computer.
1.2.22 Comment

We stated earlier that the coefficients in our systems of equations
belonged to the field R of real numbers. In fact the above method for
solving a system of linear equations works equally well if the coefficients
belong to the field ¢ of complex numbers or to the field @ of rational
numbers, The solutions will of course then have wvalues in € or @
respectively.

It should be noted that if all of the coefficients of a system are
integers then the solutions will be rational numbers but not necessarily
integers since fractions may occur in the reduction to echelon form.

Problems 1B

1. Solve by back substitution each of the following ;
(i) 3:L|+x:+213-x‘=2
21:1 + 3x] + 41‘ = -2
X, - ﬁx‘ =9
x =4
4
(ii) 3w+ 2x + 2y -2 =2
2x +3y + 4z = -2
y-6z==6

2. Use Gaussian elimination 10 solve

141 3w 1
021 3||x 0
y
4

1312
0216

3. Solve each of the following ;

{a) w-x+y-2z=1
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WH+X-y-z=1
W-X-yY+z=2
dw - 2x - 2y = 1
{b) x+y+z=1
X-y+2z=1
2x + 3z =2
2x + 6y = 2
4. Show that the following system has a unique solution for all k = -1 but
has no solution for k = -1.
x+y+kz=1
xX-y-z=2
2xx +y-2z=13
5. Solve each of the following ;
{a) Xx-y-z=1
xxk -y +2z2=17

X+y+z=235

Xx-2y-z=10
(b) X+2y-z=2
2x -y-2z=4

x4+ 12y -z=2
6. Let A be an man matrix, x a column vector of length n, and let O denote
the column vector of length m consisting entirely of zeros. Show that the
system Ax = O is always consistent, i.e. the solution set is non-empty. (A
system of the form Ax = O is called a homogeneous system.)
If the vector v satisfies Av = b show that the wvector v + w will be a
solution of Ax = b whenever w is a solution of the homogeneous system Ax = (0

Show that every solution of Ax = b is expressible in this form.
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1.3 The inverse of a square matrix

Let A be an nxn matrix. If there exists an nxn matrix B such that
AB = BA = In. the nxn identity matrix, then B is said to be an inverse of A.
1.3.1 Remark

If B and B, are each inverses of A then B, = B,. This is because
El1 = Bl(ﬁEI] = {Blﬁ]Bj = B,. Thus if an inverse of A exists it is unique and
so we may talk about the inverse of A.

1.3.2 Notation and termlnnlog_r

The inverse of A is denoted A”. We say that A is non-singular (or
invertible) if the inverse of A exists. Otherwise we say that A is singular,
1.3.3 Proposition
The inverse has the following propertics;
() (A"Y! = A for all invertible nxn matrices A.
(ii) (AB)" = B"A™ for all invertible nxn matrices A and B.
(i) (A" = (A™") for all invertible nxn matrices A.

Proofl

Easy exercise.

1.3.4 Lemma

Each of the three kinds of elementary matrix in (1.2.17) is invertible.

Proofl

The inverse of an elementary matrix will be an elementary matrix of the
same kind.
For an elementary matrix E of the first kind E* = I and so E'= E, For an
elementary matrix E of the second kind which has the non-zero scalar A in
the (i,i)-place E' will have A in the (i,i)-place.
For an elementary matrix of the third kind which has the scalar A in the

(r,s)-place E! will have -A in the (r,s)-place.
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1.3.5 Proposition
Let A be an nwn matrix. The following three statements about A are

equivalent ;

(i) A is invertible.

(ii) The system of linear equations Ax = b has a unique solution for
some vector b,

(iii) A is expressible as a product of elementary matrices.

Proof

If A is invertible then the system Ax = b has the unique solution
x = A'b. Thus (i) implies (ii).

To prove that (ii) implies (ili) note first that if the system of
equations Ax = b has a unique solution then A must reduce to an echelon form
with entries 1 at each point on the diagonal. (The diagonal of a square
matrix is the set of all (i,i)-entries.) By a further set of elementary row
operations we may reduce this echelon form to the identity matrix. Hence if
the system Ax = b has a unique solution then there exist elementary matrices
E:‘,E;....E-iIr such that EIE:. - .E'.ﬁ = [. Muliply this equation on the left
successively by E;’, E‘.;l, .+ .. E' and we obtain A as a product of
elementary matnices by (1.3.4).

Suppose A = EIEI. . .Er where Ei, i = 1,2,...r are elementary
matrices. Then A is invertible by (1.3.3)(ii) and (1.3.4). This shows that
(iii) implies (i).

1.3.6 Remark
If the system Ax = b has a unique solution for some vector b then it

has a unique solution for every vector b. (The unigue solution is of course

given by x = A”'b.)
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1.3.7 Calculation of the inverse

Proposition (1.3.5) yields an effective way to calculate Al
Perform a sequence of elementary operations on A to reduce it to the

identity matrix 1. Then performing exactly the same sequence on I will

yield A", The following example illustrates this ;

1.3.8 Example
1 31
A=|112
2 1-2
We write A and 1 alongside each other and perform the elementary operations

on them together.

(13 1) (100
-11 2 010
(21 -2 001

131|100
043 110
0-5-4f | (-201]
1 3 11| (110
0 20 15 350
0-20-16) | [-8 04
1 3 1)[(10

020 15 550
0 0-1 | {354

13| (1 oo
oas3f|{ft 10
001) | |3-5-4

130y | (2 5 4
040| | |-81612
001 | (3-5-4

130 (-2 5 4
010 -2 4 3
001) | |3-5-4




010 2 4 3
001 354

ll 00 4 -7 -5
We performed the following sequence of operations;
Add row 1 to row 2 and subtract twice row 1 from row 3
Multiply row 2 by 5 and multiply row 3 by 4
Add row 2 to row 3
Divide row 2 by 5
Subtract row 3 from row 1 and subtract 3 times row 3 from row 2
Divide row 2 by 4

Subtract 3 times row 2 from row 1.
4 -7 -5
We have thus found that A' = |-2 4 3.
3-5-4

As a check on the calculation of A" the reader should always verify
that AA™ = 1.

1.3.9 Comment

If we replace the word "row" by the word “column"” everywhere in
(1.2.16) we can define elementary column operations. Performing an
clementary column operation on a matrix A amounts to multiplying A on
the right by an elementary matrix. Elementary row operations occurred
naturally in (1.2) in the manipulation of systems of linear equations
whereas column operations would not have been appropriate there. However all
we have said in this section (1.3) on calculating inverses can be done
equally well using elementary column operations instead of row operations.
It is important though not to mix row and column operations, i.e. to find
Al we cither reduce A to the identity matrix I using only clementary row

operations or else reduce A to [ using only elementary column operations.



1.4 Determinants

For each square matrix A with entries in F, F = R or ¢, we can
associate a single element of F called the dererminant of A and denoted det
A for short.
1.4.1 Definition

Let A = {a"} be a 1:1 matrix. We define det A = a .
Let A = {aij} be a 2:2 matrix. We define det A = a8, -a.a.
Now assume that the determinant has been defined for all (n - 1}k(n - 1)
matrices and let A = [au) be an n:n matrix.
We denote by Mﬁ the determinant of the (n - 1)x(n - 1) matrix obtained from
A by deleting row i and column j of A. We call Mij the minor of A
corresponding to the entry aij of A.

We now define the determinant of the nxn matrix A by
n

det A =jgl{-1f*‘a,iuu.

Note that for n = 2 this reduces to the definition already given and

for n = 3 we have the formula

a_ a a a
det A = nudct a'u Bl . audct ::: ;3' + “|;-,dﬂ :2' an .
2 % TR TR

The main properties of determinants are contained in the following
proposition;

1.4.2 Proposition

11
(1) det A =j);|{-1)'* a M.

(2) det A = det A" for all square matrices A,
(3) If A is upper triangular, i.c. a, = 0 for all i > j,
then det A = aa.a. .2 .

If A is lower triangular, i.e. a, = 0 for all i < j,
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then det A =a a a ...a .

(4) If one row of A consists entirely of zeros then det A = 0.

(3) If B is the matrix obtained from A by multiplying one row of A by the
scalar A then det B = A det A.

(6) If B is the matrix obtained from A by interchanging two rows of A then
det B = -det A.

(7) If two rows of A are identical then det A = 0.

(8) If B is the matrix obtained from A by adding A times one row of A o
another row of A then det B = det A.

(9) Properties (4), (5), (6), (7),and (8) remain wvalid if the word "row"
is replaced everywhere by the word "column”.

(10) det AB = (det A)(det B) for any pair of nsn matrices A and B.

Proof

The proof of all these properties is rather long and is left until the
appendix to this chapter.
1.43 Remark

The formula in our definition of det A is often called the expansion
along the first row because the entries A j = 1,2,.n of row 1 appear
in the formula.
Property (1) shows that det A can equivalently be obtained via an expansion
down the first column.
Evaluation of det A from the basic definition involves a lot of calculation
even if n is as small as 4. It is easier to reduce A to upper or lower
triangular form by row operations and utilize the properties given in

(1.4.2). We illustrate this by the following example;



lddEn
3112
1 201
-2 1-1 3
3112 {]-gé-l
1 201 | 1
det A = det 11 11 = det 0.1 2.2
-2 1-1 0 5-1 5

after subtracting 3 timr.s row 2 from row 1, subtracting row 2 from row 3,
and adding twice row 2 10 row 4. This uses property (8).
Adding row 1 to row 4 and interchanging row 1 and row 2 then yields , using

properties (6) and (8), that

det A = —

o= th 1
5 crn—o
.p..l:..'ln-in-

1
0
0
)]
and

Subtracting 5 times row 3 from row 2 h

—

interchanging row 2 with row 3

yields, using (B) and (6) again, that

det A =

coo-—
1=l
=L -1 1=
2O E—

Property (3) now gives det A = 36.
1.4.5 Remark

It is possible to give a more sophisticated definition of the
determinant and some textbooks do this. Their definition is equivalent to
ours. However the definition of (1.4.1) and knowledge of the properties of

(1.4.2) are sufficient for our purposes.

1.4.6 The Idjﬂgﬂtt of a matrix

Let A = {nH} be an nan matrix. The cofactor C.j of A corresponding to
the entry a is defined by C, = u:-n‘*imu where M, is the minor as
defined in (1.4.1).

Note that det A = z ““C:j'
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The adjugate of A, denoted adj A, is the n:n matrix which has entry 'Cjii in
the (i,j)-place. Thus adj A is the wanspose of the matrix of cofactors of
A.

To obtain adj A we first find the matrix of minors Mﬁ. then multiply
alternate entries of this matrix by -1, and finally transpose the matrix.

The following diagram may be helpful in remembering where to multiply by -1.

[+ - + - )
-+ -+
+ - + -
- 4+ - o+
)
ab d -
Fnruampleifﬁ:cdth:nndjﬁn_ca.

1.4,7 Proposition
Let A be an nxn matrix and [ the identity n xn matrix. Then
A(adj A) = (adj A)A = (det A)I

Proof

See the appendix to this chapter.

1.4.8 Proposition

The n:n matrix A is invertible if and only if det A = Q.

Proof

If det A # 0 then A" exists and equals (det A)'(adj A) by (1.4.7).
Conversely if A exists then property (10) of (1.4.2) applied with
B = A" implies that (det A)(det A" =det I =1 and in particular det A

cannot be zero.

1.4.9 Calculation of the inverse via the adjugate

We have seen in (1.3.7) and (1.3.8) one method of calculating A,

Proposition (1.4.7) yields a different method which is very quick for 2:2
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and 3x3 matrices. For larger matrices the calculations become very
cumbersome and the method of (1.3.7) for finding inverses is more efficient

from a computational viewpoint.

ab

Let A = | 4| Then A’ exists provided ad - bc # 0 and

At = (ad - bc}"[ d 'h].
= &

1.4.10 Example
102

Show that A = |2 3 1] is invertible and find A",

121 i

1 1
The matrix of minors of A is |-4 1 2| and det A = 3.
3 3
1 4 -6
Hence A" = (1/3)adj A = (1/3)]-1 -1 3|.

1-2 3

=3

1.4.11 Exercise

- For the matrix A of Example (1.3.8) verify that the above method yields
the same value for A"’ as was obtained in (1.3.8).

Problems 1C

1. Use the method of 1.3 to find the inverse of each of the following;

10201 1 23 4 2 2 2
01 2 3
2]'11 0(}121 ﬂzz.
1 91 0 0 0 1 o 0 2
01 0
2. Let X = |0 O 1|. Show that al + bX + c¢X? = O. Deduce that X is
-a -b -¢

invertible if a # 0 and that X" = -(1/a)(bl +cX).

A B
3. Let X = [C D] be partitioned as in problem 7 of problems 1A. If X is

invertible and if all the relevant inverses exist show that



(A -BD'C)" A'B(CA'B - D)

(CA'B -D)'CA" (D- CA''B)"'
4. Calculate the determinant of each of the following matrices;

234 1-12-2 2 31 2

2211 0213
01 2, a1 2| 0 2 1 -2
201 1 2 1-11

x-l

5. Show that det {a b ¢ | = (a - b}b - ¢)(c - a).

a® b ¢?
1 1 1 1
a a3, 1 %
Show that det a: a: a: a:“ =1 {a - n],
i<j
oo e,

the product over all a.a with 1 < j.

{ Marrices of the above type are called Vandermonde marrices.)
abec

6. Let A = |c a b|]. Show that det A can be factorized in the form
bca

(a + b + c)a +be + cw’)a + be’ + cw) where ® = exp (2ni/3), a primitive
cube root of unity.

Obtain a similar factorization for det which involves a

oo e
O e T
=~ = g ¢
B o0 G

primitive fourth root of unity.

(Matrices of the above type are called circulant matrices.)

7. Let A,B, and C be n«n matrices and suppose that, for each i = 2, 3, . .n,
we haverow iof A=row i of B = row i1 of C.

Suppose also that row 1 of C = (row 1 of A) + (row 1 of B).

Show that det C = det A + det B.
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8. Determine whether any of the following matrices are invertible. When the

inverse exists use (1.4.9) to calculate it.

l1-1-2 3 31 1 0 2 -2

2 11 -1
0 3 4], g8 12, 100 2|
00 2 3-21 -1 11 -1

9. Let A be an m:n matrix whose entries are integers and suppose det A = %1,

Show that all the entries of A" are integers.
AB

10.. Let X = cD

be partitioned as in problem 7 of problems 1A.

(i) If either B = 0 or C = 0 show that det X = (det A) (det D).

(ii) Instead suppose that A is invertible. By muliiplying X on the right by
a suitable matrix of the form [é n, I being the identity matrix of the
appropriate size, deduce that det X = (det A) (det (D - CA"B)}.

1.5 Some special types of matrices

Let A = {nu} be an nsn matrix with real or complex entries.

Aisuidmbcdiagonafifau=ﬂfur all i # j.

A is said to be rridiagonal if au = 0 for all ij with |i - j|] > L
i.c. all the entries of A are zero except possibly for those on the main

diagonal l:a O .a.“}. the superdiagonal (a, a, )

i ‘a‘n{n-n)'
A is said to be upper iriangular if a, = O for all i > j,

'a{u-lh
and the subdiagonal (n N

i.e. all entries below the main diagonal are zero.

A is said to be lower triangular if - 0 for all i < j,
i.e. all entries above the main diagonal are zero.

A is said to be upper Hessenberg if a = Oforalli>j+ 1,
i.e. all entries above the superdiagonal are zero.

A is said to be lower Hessenberg if a, = 0forall j>i+]1,

i.e. all entries below the subdiagonal are zero.



A is said to be symmerric if au_ = a,u for all i,j, i.e. A' = A,

A is said to be hermirian if the entries of A are complex and a, = a
for all i,j, i.e. A" = A,
( The name hermitian comes from the French mathematician Hermite.)
A is said to be orthogonal if all the entries of A are real and A' = A
A is said to be unitary if the entries of A are complex and A' = A,
A is said to be block diagonal if A is of the form
(A, OO0 0)
0O AL, O O

O O An

5 #

where hu is an nan, matrix for each i = 1,2, . . . k.

A is said to be a permutation matrix if A 15 obtained from the identity
matrix | by a permutation of the rows of I.
Problems 1D

1. If the matrix A is symmetric and invertible show that A is symmetric.
If A is hermitian and invertible show that A™ is hermitian.

2. If the matrix A is upper wriangular and invertible show that A" is upper
triangular. If A is lower triangular and invertible show that Al is lower

triangular.

1.6 More on systems of linear equations

1.6.1 Cramer’s rule

Let A be an invertible m:n matrix and Ax = b be a system of linear
equations. Cramer’s rule is an attractive way of describing the solution set

of the system. It says that the system has a unique solution given by
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x = (det A_l)fdﬂ A for each 1 = 1, 2, . . , n where A* is the nan matrix
obtained from A by replacing the i-th column of A by the column vector b.
For a proof of Cramer's rule see problem 1 at the end of this section.
Cramer’s rule is mainly of theoretical importance. It is not used much
in practice for determining the solution of systems of linear equations
because the numerical computations involved are much greater than those

required for Gaussian elimination.

1.6.2 The LU-decomposition of a square matrix

Let A be an nxn matrix. An expression of A in the foom A = LU where L
and U are respectively lower and upper triangular nin matrices is called an
LU-decomposition of A.

An LU-decomposition of A need not necessarily exist and even if it does
exist it is not unique. However for any n:n matrix A there do exist
permutation matrices P and Q, a lower triangular matrix L and an upper
triangular matrix U such that A = PLUQ. Further it can be shown that if A is
invertible then A = PLU, i.e. Q can be chosen equal to I.

Observe that if we have A = LU then the system Ax = b can be very
easily solved in the following manner;

First solve Ly = b for unknowns y = ('_.vl_] by forward elimination, ( ie.
by solving equation 1 first, then equation 2 and so on). Then solve Ux = y
for unknowns x = (xi] by back substitution as in (1.2).

More generally if A = PLUQ then we solve LUz = P'b in the above
manner, z = x being a re-arrangement of the unknowns {xi} and P'b being a

re-arrangement of the co-ordinates of b,

The method of Gaussian elimination as in (1.2.18) can be interpreted as
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yielding decompositions of the form A = LU or more generally A = PLUQ. We
will explain this in more detail. Suppose first that we are able to reduce
A to an echelon form U by a finite sequence of elementary row operations of
kind (2) and (3) only and that the only ones of kind (3) involve adding a
scalar multiple of row i to row j where i < j. Then the corresponding
elementary matrices, see (1.2.17), will all be lower triangular and we have
EE ....EA = U where U is an echelon matrix which is upper triangular
and each E.i is an lower triangular ¢lementary matrix,

Thus A = LU where L = E]"E;H..E;' is lower triangular.

L is lower triangular because the inverse of an lower triangular matnix is
lower triangular, (see problem 2 of problems 1D), and the product of lower
triangular matrices is lower triangular,

For a general n:n matrix A the reduction to echelon form by elementary
row operations cannot be accomplished without wusing the interchange
operations of kind (1). If A is invertible it can be shown that, by
permuting the rows of A in suitable fashion, the resulting matrix QA,
Q being a penmutation matrix, is expressible in the form QA = LU. Hence
A = PLU where P = Q". If A is singular an LU-decomposition cannot be
achieved without also permuting the columns of A. Permuting the columns of
A amounts to right multiplication by a permutation matrix and so in this
case the best we can do is 1o write A = PLUQ.

Problems 1E

1. Prove Cramer’s rule as stated in (1.6.1).

n

(Hinr-show that the i-component of (adj A)b is E C .lbl where Cji denotes the
=

cofactor corresponding to a, and use the properties of determinants 1o show

that this sum also equals det Ai.}

2. Find the unique wvalue of k for which the following system of linear
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equations does not have a unique solution and determine the solution set in
this case;

2 +y+2=13

x-y-z=7

6x +y + kz =11
3. Use the method described in (1.6.2) to solve the following,

32-(100)(x 2
0 6-3 41[!]3':(}
2

00 1){-162(z
(1 2 4
4. Obtain an LU-decomposition for |-1 -3 3.
(4 9 14
(0 -6 4

5. Obtain a PLU-decomposition for |2 1 2|.
1 41

1.7 Some places where matrices are found

(a) Matrices in linear algebra

Matrices are a vital and essential part of the area of mathematics
called linear algebra as we shall see fully in the next chapter. For the
moment let us just observe that a mapping f R — R’ given by
fix,y) = (ax +bycx + dy), where R’ denotes the set of all ordered pairs
of real numbers and ab,c, and d are constants, may be written succinctly in
matrix form as f(v) = Av where v = [;] and A = [:"j'.
(b) The Jacobian matrix in calculus of several variables

Let X, X

2 - be a set of real variables and let Ul el

be a new set of wvariables. The 1o matrix with entries the partial

derivatives axi}au] is called the Jacobian matrix of change of wariables.
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This matrix is important in the differential calculus of several wvariables
and its determinant is important in integration theory of functions of

several variables.

{c) The Hessian matrix in calculus of several variables

Let f[xl,xz,. . .,:n} be a function of n real wvariables. The Hessian
matrix of f is the matrix which has entry aif.-"axiaxj, the second order
partial derivative, in the (i,j)-place. This matrix is used in the analysis

of the critical points of f.

(d) The Wronskian in differemial equations

Consider the differential equation of order n

) 4 amlf"“'”' . L+ alf{”+ af=0

where a, i = 0,1, .n-1 are constants and f¥ denotes the i-th derivative

of the function f.
Let fi‘fz" .. .fjll be a set of functions each of which satisfies the
above differential equation.
The determinant of the mn matrix which has entry ff'” in the
(ij)-place for each j = 1, 2, . n, i = 0, 1. . . ., n-1 is called the
Wronskian of the set and provided it is non-zero the functions f1'f1" . f

form an independent set of solutions to the differential equation.

(e) Matrices in control theory

Engineers of various kinds (electrical, mechanical, chemical etc.) deal
with feedback control systems. A large class of such systems can be
described mathematically by the following equations involving matrices;

£ =Ax + By, y = Cx
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Here x = (x) u = {"1}' y = {yI] are column vectors of length n, m, p
respectively, and A,B,C are matrices of size nxn, mum, pxn respectively.
These three vectors are each functions of time and % denotes the column
vector of derivatives of x.

The vectors x,u,y are known as the srare vector, the inpur vector, and the
outpur vector respectively. The matrices A, B, C are known as the system
matrix, the input distribution matrix, and the measurement maitrix

respectively. These three matrices are assumed to be independent of time.

(f) Matrices in the theory of graphs and networks

The abstract mathematical notion of a graph has applications in many
practical  situations, (e.g. eclectrical circuits, communications networks,
transportation problems in  management science, molecular structure in
organic chemistry etc).

A graph consists of a finite set of wvertices (also called nodes) and a
finite set of edges (also called branches) such that each edge consists of a
distinct pair of distinct vertices.

A directed graph is a graph such that each edge consists of an ordered

pair of distinct vertices, i.e. each edge has a preferred direction.
(The graphs modelling electrical circuits have the connection points as
vertices and pieces of the circuit consisting of an em.f source and a
resistance as the edges. The graphs modelling chemical molecules have atoms
as vertices and chemical bonds as the edges. The graphs modelling
transportation problems could have different cities as wvertices and routes
between these cities as the edges.)

To any graph there is associated a matrix known as its adjacency marrix

defined as follows;



We label the vertices ‘Fl,\fl etc. and the edges ErE’z etc.
If the graph has n vertices then its adjacency matrix is the n:n symmetric
matrix with entry 1 in the (ij)-place whenever vertex V. and vertex ‘V* form
an edge and entry zero in all other places.

To any directed graph there is another matrix known as its incidence
matrix defined as follows;

If the graph has n vertices and p edges then its incidence matrix is
the nxp matrix whose k-th column has -1 in the i-th place and +1 in the j-th
place where edge EIl is the ordered pair of wvertices [‘u’i.?j}. All other

entries of the k-th column are zero,

The directed graph in Figure 1.1 below has adjacency matrix

and incidence matrix

Ll =
0

0
1
0
1

0 o —-

0
Q
1
1

Lo = B = |
-

ga )

W
m\
vs}

i 1 5
b
v, E, v,
Figure 1.1

The adjacency matrix and the incidence matrix are both useful in the study

of graphs and networks,

(g) Matrices in probability theory

The republic of Lowland has regular elections once a year and has three

political parties labelled X.Y, and Z. The inhabitants of Lowland behave in

a consistent fashion at elections and never vole for the same party at two
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successive elections. Those who vote for party X or party Y at one election
are equally likely to wvote next time for either of the two other parties.
Those who vote for party Z at one election are twice as likely to vote next
time for party X as to vote for party Y.
We construct 2 323 matrix A as follows;

In the first column of A we place the probabilities that a person who voted
for party X at one election will vote for parties X,Y,Z respectively at the
next election. In the second (resp. third) column of A we place the
probabilities that a person who voted for party Y (resp. Z) at one election
will vote for parties X,Y,Z next time. The sum of the entries in each column

of A equals one. The matrix A is called a rransition matrix.
0 1/2 273
A=|1/2 0 1/3
1/2 1/2 0
Suppose that in the first ever election in Lowland each of the three parties

gets the same number of votes, i.e. they each get one third of the total
1/3

vote, The column wvector |1/3| is called the initial state vector. The state
1/3

of the parties after n elections will be described by the vector A'v where v

is the initial state wvector.
The above is an example of a Markov process. In chapter 5 we will see

more about Markov processes.

(h) The covariance matrix in statistics

Let EI,J{:, . .. ,Xn be a set of random wvariables and let E{xl} = K
for each i where E denotes expectation. Statisticians make use of the
covariance matrix of the vector of random wariables :xl,xz, . . ,Hﬂ}. This
is the nan matrix which has enry E I{Ki - jJ.IJ{Kj - uj]] in the (i,j)-place.



APPENDIX TO CHAPTER 1

A proof of the properties of determinants

In this appendix we derive the properties of determinants listed in
Proposition (1.4.2) and also prove Proposition (1.4.7). First we state and
give the proof of each of the ten properties in (1.4.2).

Proposition 1.4.2

(1) det A = E(-l)j”a”h{“ where M denotes the minor of the mn matrix A

i=t

corresponding to the entry aij of A. (See (1.4.1) for the definition of
minor.)
i.e. det A can equivalently be obtained by expansion down the first column.

Proof

The proof is by induction on n.
It is easy to see that the result is true for n = 2 so let A be an mn

matrix and assume the result is true for all (n-1)x(n-1) matrices. Expansion

of det A along the first row gives

detA =_): {-1)""aumu.

By the inductive assumption we can expand Mli down the first column to

get M =) ()""ad where d denotes the determinant of the
TR N i u

(n-2)x(n-2) matrix obtained from A by deleting row 1, row i, column 1, and

column j. Hence the only term in det A involving a,a, is ) e ‘lz.uan-:iij

n
Also by the inductive assumption M“ =}:(-1}"j”al_di,, Thus,
" j=2 1
examining the expansion E{-l]"'ln“M". we see that the only term involving

a8 is (-)""a a d_ This proves (1).



(2) det A = det A' for all nan matrices A.
Proof
Observe that the minor Mu of A will equal the (j,i)-minor of the

matrix A'. Hence, after expanding along the first row, we sec that

det A' = E l{-l)’"'aill*n-![jI and by property (1) we see that det A is given by

i=1
exactly the same expression. This proves (2).

(3) If A is upper or lower triangular then det A = a a ..a .

Proof

The proof is by induction on n.
The result is clearly true for n = 1 so let A be an mn matrix and assume
the result is true for all (n-1)x(n-1) matrices. If A is lower triangular
expanding along the first row vyields that det A = a”M" = aa...8
by the inductive assumption. If A is upper triangular expanding down the

first column yields a similar result. This proves (3).

(4) If one row of A consists entirely of zeros then det A = 0.

Proof

The proof is by induction on n.
If n = 1 the result is clearly true so let A be an nan matrix and assume the

result is true for all (n-1){n-1) matrices A.
n

Now det A =izl[-l]j"ﬂnM:j- If row 1 of A consists entirely of zeros then
clearly det A = 0. If row i for some i > 1 consists entirely of zeros then
cach minor M“ will be zero by the inductive assumption so that det A = 0.
This proves (4).
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(5) If B is the matrix obtained from A by multiplying one row of A by the
scalar A then detB = A detA.
Proof

The proof is by induction on n.

The result is clearly true for n 1 so let A be an mun matrix and assume

the result is true for all (n-1)x(n-1) matrices. If row 1 of A is multiplied
by A then each term in the expansion along the first row is multiplied by A
so that det B = A det A,

If row i for some i > 1 is muliiplied by A then each minor appearing in the
expansion along the first row will be multiplied by A because of the
inductive assumption. This gives det B = A detA again and so (5) is proved.

(6) If B is the matrix obtained from A by interchanging two rows of A then
det B = -det A.

Proof

Note first that the interchange of row i and row j can be achieved by
successively interchanging an odd number of adjacent rows. ( Specifically
moving row 1 to below row j takes i - j interchanges of adjacent rows and
then shifting row j into the original position of row i takes a further
i - j - 1 interchanges.) Thus it suffices to prove the result in the case
when two adjacent rows are interchanged.

Now suppose we interchange row i and row i + 1 of A, Write Mti for the

minors of A and Ru for the minors of B. We observe that Ml-l - . R.H for all

k#ii+], thawaM = hﬂ+IJIRﬁ+l}l' and that b R = a’{hmMﬂHJI'

Examining the expansions of det A and det B down the first column we

see that det B = - det A. This proves (6).
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(7) If two rows of A are identical then det A = 0.

Proof

Interchanging the two identical rows yields det A = -det A by propeny
(6) and hence det A = 0.

(8) If B is the matrix obtained from A by adding A times one row of A to
another row of A then det B = det A,

Proofl

Let B be the n:n matrix having the same rows as A except for having A
times row i of A plus row j of A as its j-th row.

Let C be the n:n matrix having the same rows as A except for having A
times row i of A as its j-th row.

Observe first that det B = det A + det C. ( This can be seen by
interchanging row j with row 1 for each of the three matrices A, B, C,
finding det A, det B, det C by expansion along the first column, and using
property (5).)

But det C = 0 by properties (5) and (7) so that det B = det A,

(9) Properties (4), (5), (6), (7), and (B) remain valid if the word “row"
is replaced everywhere by the word "column”.
Proof

The columns of A are the rows of A' and vice versa. The result now

follows because of property (2).

(10) det AB = det A det B for any pair of nxn matrices A and B.
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Proof

Assume first that A is non-singular. Then the argument in the proof of
(1.3.5) shows that A is reducible to the identity matrix I by a sequence of
elementary row operations. If we use only operations of type (1) and (3) we
can reduce A to a diagonal matrix D with all of the diagonal entries of D
being non-zero. Let r be the number of operations of type (1) used. ( ie.
r is the number of row interchanges). Then, using properties (6) and (8),
detA = (-1)" det D.

Also det AB = (-1) det DB since exactly the same sequence of
elementary row operations transforms AB inmo DB.

Now let the diagonal entries of D be Q0 . . O Multiplying B on

the left by D amounts to multiplying row i of B by o for each i = 1,2, . n

12
Thus det AB = (-1)'det D det B = det A det B.

Then by property (5) we see that det DB = a ox_. . . o det B = det D det B.

Now suppose A is singular, i.e. A does not have an inverse. If also B
is singular then the system of equations Bx = () has a non-zero solution,
( x =0 is always one solution of Bx = (0 and by (1.3.6) the solution of Bx =
0 is unique if and only if B is non-singular.) Hence the system ABx = 0 has
a non-zero solution which implies that AB must be singular.
If B is non-singular then again AB must be singular for if AB is
non-singular then (1.3.5) gives that AB = EE ..E for elementary matrices
Ei. i =12, .., which implies that A is non-singular. ( A = E'.EE.:...E'IEFl
which is non-singular by (1.3.3){ii) and (1.3.4).)

The above argument shows that AB is singular whenever A is singular.

Now any singular matrix X must have zero determinant. ( If X is
singular then X is reducible to an echelen form E with a zero somewhere on

the diagonal. Properties (5), (7), and (8) imply that det E = a det X for



some non-zero scalar o, and det E = 0 by property (3).)
Thus whenever A is singular the equation det AB = det A det B is valid
because each side of the equation is zero. This completes the proof of (10).

Proposition 1.4.7

Let A be an nxn matrix and let I be the man identity matrix.
Then A (adj A) = ( adj A) A = (det A) L

Proof

Let A = (aH] have minors Mij and cofactors Cﬂ = {-1)i’jMii. Since
adj A is the transpose of the matrix of cofactors of A the (i,j)-entry of
the product A (adj A) will be a“Cﬂ + nuﬂ'ﬂ I + Q_Ch .

For i = j = 1 the above sum will equal det A as it is precisely the
definition of det A by expansion along the first row. Now suppose i > 1 and
i =]j Let B be the matrix obtained from A by moving row i above row 1 and
leaving all other rows fixed. B is obtained from A by successively
interchanging row i with rows i-1, i-2, . . .,1. Hence det B = (-1)"'det A
using (6) of (1.4.2). Note that the (l,k)-minor of B will equal the minor
M_ of A. Expanding along the first row yields

n-1
det B = a“M“ - “aM.'z +.. . . .+ (D ath

Equating this with det B = (-1)"'det A and using C, = 1:-1}."”‘14«1',;i we see
that aﬂﬂu + aﬂCﬂ + ...+ “-.Ca. = det A.

Now suppose 1 # j. Let G be the matrix obtained from A by moving row i
above row 1, leaving the other rows fixed, and then replacing row j by a
second copy of row i. Then det G = 0 by (7) of (1.42) as G has two
identical rows. Note that the (1k)-minor of G will equal (-l}i"“h-li.
( The second copy of row i in G must be moved through i-j-1 rows to return

to its rightful place.) Expanding along the first row yiclds



det G = (D7'(aM -a M +. ...+ (DM ).

Using det G = 0 and C, = (—1}"5'Mu we see that
nuC“ + '.:Cﬂ L PSR .+ uhﬂp = 0.
This proves that A (adj A) = (det A) L
Replacing A by A' in this last equation, transposing the whole
equation, and wusing (i), (ii)) of (1.1.11) and (2) of (1.4.2) yields
that (adj A" A = (det A) I. From the definition of adjugate and property
(2) of (1.4.2) we see that adj A' = (adj A)' for any matrix A.

Thus (adj A) A = (det A) I and the proof is complete.



